
1. Introduction
As the largest freshwater consumer, agricultural irrigation consumes about 70% of the global freshwater with-
drawal from surface/subsurface water systems, representing the most significant human-driven alteration to the 
natural hydrological cycle (Foley et  al., 2011; Siebert et  al., 2010). Meanwhile, to sustain an ever-increasing 
global population, agriculture's expansion requires more and more water for irrigation (Jägermeyr et al., 2017). 
Moreover, the localized water and energy balance can be affected by irrigation when it artificially increases evap-
otranspiration (ET), leading to a decrease in the sensible heat flux and cooling of the air temperature, which can 
partly attenuate the warming effect induced by greenhouse gases (Bonfils & Lobell, 2007; Lawston et al., 2017; 
Zaussinger et  al.,  2019). Therefore, accurate estimation of irrigation water use (IWU) and its spatiotemporal 
patterns is crucial for understanding regional water budgets and improving the efficiency of agricultural water 
management (Brocca et al., 2018; Jalilvand et al., 2019; Kumar et al., 2015; Li et al., 2018; Siebert et al., 2015; 
Wada et al., 2013, 2014, 2017). Knowledge of IWU is also beneficial when exploring the hydrologic implications 
of human activities, such as ET redistribution (Fisher et al., 2017), local cooling effects (Kueppers et al., 2007), 
and irrigation efficiency at multiple scales (Grafton et al., 2018).

In the past few decades, remote sensing techniques have evolved rapidly, and have made the monitoring of irriga-
tion by onboard sensors possible (AghaKouchak et al., 2015; Fisher et al., 2017). Nevertheless, quantification of 
the actual IWU has rarely been explored at a large scale, which represents the total irrigation water actually enter-
ing the field (including the irrigation water consumption (IWC) supporting plant growth, soil evaporation, canopy 
interception of water, and soil water drainage). A novel way of estimating IWU has been recently proposed 
through identifying the soil moisture changes caused by rainfall and irrigation events (Brocca et al., 2018). By 
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treating the irrigation event as a special type of rainfall, Brocca et al. (2013) proposed the SM2RAIN algorithm to 
estimate the total water that falls on the irrigated land. This algorithm has since been widely evaluated at multiple 
scales (Brocca et al., 2016; Ciabatta et al., 2017; Prakash, 2019; Zhang et al., 2020). Thus, the amount of IWU 
can be determined when the soil moisture increases on rain-free days.

However, there are still some limitations to this method, especially when estimating IWU at a global scale. 
First, to apply this method to estimate global IWU, the primary issue is the inevitable data gaps in the individ-
ual satellite-based soil moisture product induced by the satellite orbit and data quality. However, there are now 
various microwave remote sensing products suitable for use in global applications, which provide us with the 
potential for incorporating the advantages of the various soil moisture products, to reduce the data gaps/errors 
arising from individual observations (Dorigo et al., 2010; Liu et al., 2012). Hence, it is imperative to integrate 
the various available satellite-based soil moisture products when estimating IWU at a global scale. Second, the 
ET process in the previous studies has been simply characterized as either an empirical relationship with air 
temperature or a linear constraint to potential ET by soil moisture (Brocca et al., 2018; Jalilvand et al., 2019), 
which can cause uncertainty when estimating the soil water balance, and thus IWU. Therefore, it is necessary to 
incorporate a process-based ET model, such as the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model 
(Fisher et al., 2008), to quantify the spatiotemporal distribution of global ET. Finally, the accurate estimation of 
global IWU is also greatly dependent on the proper selection of model parameters when connecting the different 
variables associated with the soil water balance. Recently, Bayesian methods have received much attention in the 
parameter estimation of nonlinear models (Clark & Gelfand, 2006; Keating et al., 2010; Zhang et al., 2019; Zhu 
et al., 2014). By combining the prior knowledge of the parameters and observations, the posterior distribution of 
the parameters can be obtained by the Bayesian methods (Zhu et al., 2018). However, to date, no related studies 
have been conducted with regard to optimizing the parameters in IWU estimation by the use of the Bayesian 
methods.

Therefore, in this study, we attempted to estimate the amount of IWU in global irrigated areas by integrating vari-
ous satellite-based soil moisture and precipitation products. The main objectives of this study were to: (a) develop 
a physically based framework for the estimation of global IWU with multiple satellite observations; (b) improve 
the performance of IWU estimation by coupling a process-based ET module and utilizing a Bayesian data/model 
fusion scheme; and (c) establish the spatial and temporal patterns of global IWU. In addition, in this paper, the 
estimated IWU is further compared with the available irrigation inventories, and the uncertainties associated with 
the estimation are also identified.

2. Methods
2.1. Theoretical Foundation for the Estimation of IWU

For a daily interval, the changes in soil water storage for a unit area can be expressed as (Dari et al., 2020; Filip-
pucci et al., 2020; Jalilvand et al., 2019)

𝑍𝑍s
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑃𝑃 (𝑑𝑑) + 𝐼𝐼(𝑑𝑑) − 𝐸𝐸𝐸𝐸 (𝑑𝑑) −𝐷𝐷(𝑑𝑑) − 𝑆𝑆(𝑑𝑑), (1)

𝐷𝐷(𝑡𝑡) = 𝐾𝐾s ⋅ 𝜃𝜃(𝑡𝑡)
3+

2

𝑏𝑏 , (2)

where θ is the relative soil moisture (%); Zs is a parameter related to the soil physical characteristics (i.e., soil 
porosity and layer depth), which represents the maximum water storage capacity of the soil column; t is the time 
step (i.e., days); P is the precipitation (mm); I represents the amount of IWU (mm); ET is the evapotranspiration 
(mm), which includes the soil surface evaporation, plant transpiration, and evaporation through canopy intercep-
tion; D is the drainage (mm), which includes both deep percolation and lateral infiltration; S is the surface runoff 
(mm), which can be ignored in irrigated cropland; Ks is the saturated hydraulic conductivity (mm); and b is the 
pore size distribution parameter.

Thus, the IWU can be estimated if the state variables (i.e., P, ET, θ) and involved parameters (e.g., Zs, Ks, b) are 
known. In this study, both P and θ were obtained from the satellite-based products, while the parameters (e.g., 
Zs, Ks, b) in the models were optimized using the differential evolution Markov chain (DE-MC) scheme (see 
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Section 2.2). In this equation, ET is the key factor in determining the soil water conditions, and should be properly 
described. In this study, we used the process-based PT-JPL model to estimate ET.

The PT-JPL model based on the Priestly-Taylor (PT) equation (Priestley & Taylor, 1972) was initially developed 
by Fisher et al. (2008). In this model, the actual total ET is separated into plant transpiration (Et), bare soil evap-
oration (Es), and canopy-intercepted evaporation (Ei)

𝐸𝐸𝐸𝐸 = 𝐸𝐸t + 𝐸𝐸s + 𝐸𝐸i, (3)

𝐸𝐸t = (1 − 𝑓𝑓wet) ⋅ 𝑓𝑓g ⋅ 𝑓𝑓t ⋅ 𝑓𝑓m ⋅ 𝛼𝛼
Δ

𝜆𝜆(Δ + 𝛾𝛾)
𝑅𝑅nc, (4)

𝐸𝐸s = (𝑓𝑓wet + 𝑓𝑓sm (1 − 𝑓𝑓wet)) ⋅ 𝛼𝛼
Δ

𝜆𝜆(Δ + 𝛾𝛾)
(𝑅𝑅ns − 𝐺𝐺) , (5)

𝐸𝐸i = 𝑓𝑓wet ⋅ 𝛼𝛼
Δ

𝜆𝜆(Δ + 𝛾𝛾)
𝑅𝑅nc, (6)

where α is the PT coefficient, which is equal to 1.26; Δ is the slope of the saturated vapor-pressure curve 
(kPa °C −1); γ is the psychrometric constant (0.066 kPa °C −1); λ is the latent heat of vaporization (MJ kg −1); G 
is the soil heat flux (W m −2); Rnc and Rns are the net radiation (Rn) allocated to plant canopy and soil surface, 
respectively; the f-function (i.e., fwet, fg, ft, fm, fsm) represents the eco-physiological constraints (see Table 1). In 
this study, the input data of the PT-JPL model were obtained from reanalysis data sets and satellite-based products 
(see Section 3). The parameters of the PT-JPL model for cropland were directly derived from our previous work 
(Zhang et al., 2017).

2.2. Implementation of the IWU Algorithm

The main purpose of this study was to estimate the IWU on the pixels of the irrigated areas. In the IWU algo-
rithm, there are three main steps when calculating IWU based on the estimates of the state variables and param-
eters in the soil water balance equation (Figure 1).

1.  Optimizing the parameters to balance the soil water dynamics: First, we used satellite-based precipitation 
observations to estimate the parameters (i.e., ϕ = [Zs, Ks, b]) in Equation 1. On rainy days, we assumed that 
no irrigation was applied (i.e., I = 0). Thus, the precipitation can be derived based on the soil water balance 
equation as

𝑃𝑃der(𝜙𝜙; 𝑡𝑡) = 𝑍𝑍s
𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
+ 𝐸𝐸𝐸𝐸 (𝑡𝑡) +𝐷𝐷(𝑡𝑡), (7)

 where Pder is the derived precipitation from the soil water dynamics and ϕ is the vector of the unknown param-
eters. In this study, the changes in soil moisture 𝐴𝐴

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)

 were acquired from the satellite observations, and ET 

Name Description Equation Reference

fwet Relative surface wetness RH 4 Fisher 
et al. (2008)fg Green canopy fraction fAPAR/fIPAR

fm Plant moisture constraint fAPAR/fAPARmax

fsm Soil moisture constraint RH VPD/β

ft Plant growing temperature constraint
𝐴𝐴 exp

(

−

(

𝑇𝑇a−𝑇𝑇opt

𝑇𝑇opt

)2
)

June 
et al. (2004)

Note. RH is the relative humidity (%); Ta is the air temperature (°C); Topt is the optimum temperature for plant growth (°C); 
VPD is the vapor-pressure deficit (kPa); β is the sensitivity of fsm to VPD; fIPAR is the fraction of photosynthetically active 
radiation (PAR) intercepted by the canopy, which is derived from the normalized difference vegetation index (NDVI); fAPAR 
is the PAR absorbed by the green canopy, which is derived from the enhanced vegetation index (EVI).

Table 1 
The Eco-Physiological Constraint Functions in the PT-JPL Model
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was obtained from the PT-JPL model. To optimize the unknown parameters (ϕ), we forced the values of Pder to 
be close to the target satellite-based precipitation observations (Pobs). In the Bayesian framework, the posterior 
distribution of the parameters can be expressed as

� (�|�obs) = � (�)
�
∏

�=1

1
√

2��2
exp

(

−
(�der(�; �) − �obs(�))2

2�2

)

, (8)

 where � (�|�obs) is the posterior parameter distributions; f(ϕ) is the prior parameter distributions; and σ is the 
standard deviation of the model error during the observation period. In this study, we employed the DE-MC 
scheme, which is a robust parameter optimization scheme, to obtain the optimal parameter values (the median 
values of the posterior distributions). The DE-MC scheme is an adaptive Markov chain Monte Carlo (MCMC) 
method, which is combined with a genetic algorithm (Storn & Price, 1997). In the DE-MC scheme, multiple 
chains are run in parallel to estimate the posterior distribution. For the ith iteration, the proposed chain is 
derived from two randomly selected chains, and the difference between them is multiplied by a scaling factor, 
which is then added to the current chain as

𝜙𝜙p = 𝜙𝜙i + 𝑥𝑥 (𝜙𝜙r1 + 𝜙𝜙r2) + 𝑒𝑒𝑒 (9)

 where ϕp is the proposed chain; ϕr1 and ϕr2 are two randomly selected chains without replacement from the 
population except ϕi; x is the scaling factor, which is set as 𝐴𝐴

2.38
√

2𝑑𝑑
 and d is the dimension of parameter sets; and e 

is drawn from a symmetrical distribution and represents a probabilistic acceptance rule. Additional details of 
the DE-MC scheme can be found in ter Braak and Vrugt (2008). In this study, we ran 20 chains in parallel and 
set a total of 5,000 iterations for each pixel, including 500 iterations as the burn-in period.

2.  Estimating the IWU at each pixel: After obtaining the optimal parameter values, it is possible to estimate 
the IWU at each pixel based on the soil water balance relationship by identifying the irrigation signal. This 
approach has also been demonstrated in previous studies (Dari et al., 2020; Filippucci et al., 2020; Jalilvand 
et al., 2019). In particular, the increase in soil moisture is considered to be caused by irrigation when the 
precipitation is below a critical value (i.e., 0.5 mm day −1; Brocca et al., 2019). Thus, the daily IWU for a given 
pixel can be derived according to (Step 2 in Figure 1)

𝐼𝐼(𝑡𝑡) = 𝑍𝑍s
𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
+ 𝐸𝐸𝐸𝐸 (𝑡𝑡) +𝐷𝐷(𝑡𝑡), (10)

Figure 1. Diagram of the irrigation water use (IWU) estimation algorithm for each pixel of irrigated areas.
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 where 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is obtained from the satellite-based observations; ET is estimated using the PT-JPL model; and D(t) 

can be estimated using the optimized parameters obtained in Step 1.
3.  Postprocessing: We masked the daily IWU estimates during the frozen periods because no irrigation is applied 

when the air temperature is below 0°C (Step 3 in Figure 1). The daily IWU estimates were then aggregated 
to the monthly scale.

2.3. Framework for Integrating Multiple Satellite-Based Products

To overcome the data gaps and reduce the uncertainty caused by the input data, we used multiple satellite-based 
products to obtain ensemble estimates of IWU with a continuous coverage. Specifically, based on the IWU 
algorithm (Figure 1), a total of 32 groups of individual IWU (IWUi) estimates were produced using the different 
satellite-based soil moisture products (eight) and precipitation products (four; Figure 2). However, these individ-
ual IWU estimates may be unreliable due to the data gaps caused by the satellite orbit coverage and noise (see 
Figure S1 in Supporting Information S1). To address this issue, we fused the different IWUi estimates to obtain 
an ensemble IWU estimate. For a specific precipitation product, the individual monthly IWU was fused based on 
the corresponding completeness of the eight soil moisture products

IWUp =
1

𝑁𝑁

𝑁𝑁
∑

i=1

(

𝑤𝑤
i
gap ⋅ IWUi

)

, (11)

where N is the number of soil moisture products (N = 8); IWUi is the ith individual monthly IWU estimate (i = 1, 
2,…, 32); IWUp is the integrated estimate of IWUi for the pth precipitation product (IWUp) (p = 1,2,…,4); and 

Figure 2. Framework for estimating global irrigation water use (IWU) based on multiple satellite-based products.
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𝐴𝐴 𝐴𝐴i
gap

 is the weight of IWUi, which is derived from the completeness (ci) of the different soil moisture products 
during the unfrozen period

𝑤𝑤
i
gap = 𝑐𝑐i∕

𝑁𝑁
∑

i=1

𝑐𝑐i. (12)

To further reduce the uncertainty of the precipitation products, a final ensemble IWU (IWUens) for each pixel was 
then determined as

IWUens =
1

𝑀𝑀

𝑀𝑀
∑

p=1

(

𝑤𝑤
p

cor
⋅ IWUp

)

, (13)

where M is the number of precipitation products (M = 4); and 𝐴𝐴 𝐴𝐴
p

cor
 is the weight for IWUp, which is derived from 

the soil water balance status

𝑤𝑤
p

cor
= 𝑟𝑟p∕

𝑀𝑀
∑

p=1

𝑟𝑟p, (14)

where rp represents the matching level between the precipitation product and the set of soil moisture data, which 
can be calculated from the correlation between the satellite-based precipitation (Pobs) and the derived precipita-
tion (Pder)

𝑟𝑟p =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃der, 𝑃𝑃obs)

𝜎𝜎𝑃𝑃der
⋅ 𝜎𝜎𝑃𝑃obs

, (15)

𝑃𝑃der(𝜙𝜙; t) = 𝑍𝑍s
d𝜃𝜃

dt
+ 𝐸𝐸𝐸𝐸 (t) +𝐷𝐷(t), (16)

where Pder is the derived precipitation from the soil water balance equation on irrigation-free days (I = 0).

3. Data
To cover the available period for most of the satellite-based soil moisture products, we selected 2011–2018 as 
the study period. All the data were preprocessed to a daily time series with a uniform spatial resolution of 0.25°.

3.1. Remote Sensing Products

3.1.1. Soil Moisture

Eight kinds of satellite-based soil moisture products were selected in this study: three C-band products from the 
Advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer 2 (AMSR2-LPRM and 
AMSR2-JAXA); four L-band products from the Soil Moisture Ocean Salinity (SMOS-BEC and SMOS-IC) and 
the Soil Moisture Active Passive (SMAP-L3 and SMAP-L4) satellite missions; and the merged soil moisture 
product (the Climate Change Initiative Soil Moisture (CCI SM) product) from the Essential Climate Variables 
(ECV) program developed by the European Space Agency (ESA), for which version v04.7 of the CCI SM product 
was selected in this study. All these products provide a spatial resolution of 0.25°, except for the SMAP product, 
which has a spatial resolution of ∼9 km. The detailed information for these selected products are provided in 
Table 2.

3.1.2. Precipitation

Four satellite-based precipitation products were selected in this study (Table 3): the Global Precipitation Clima-
tology Project Daily precipitation data set (GPCP-Daily v1.3), with an original spatial resolution of 1° and a 
global coverage; the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis Level-3 
product (TMPA-3B42), which provides daily precipitation data and coverage between 50°S and 50°N; the 
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Climate Prediction Center MORPHing technique (CMORPH) product, which is obtained from the data of multi-
ple passive microwave satellites, combined with the motion vector of the Geostationary Meteorological Satellite 
(GMS) infrared data; and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN) Climate Data Record (CDR), which is trained based on the brightness temperature from 
geostationary satellites, with the stage IV hourly precipitation data of the National Centers for Environmental 
Prediction (NCEP). Both the CMORPH and PERSIANN-CDR products provide a spatial resolution of 0.25° and 
coverage between 60°S and 60°N.

3.1.3. Vegetation Indices (VI) and Albedo

Both the NDVI and the EVI are needed for the PT-JPL model (Table 1). The NDVI and EVI were obtained from 
the latest MOD13C1 product (https://lpdaac.usgs.gov/products/mod13c1v006/, version 006). The MOD13C1 
product provides 16-day composites (cloud-free) with a spatial resolution of 0.05°. The tenth band of the white 
sky albedo from the latest MCD43C1 product (https://lpdaac.usgs.gov/products/mcd43c1v006/, version 006) 
was used in this study for calculating the land surface net radiation (Rn) in the PT-JPL model (see Section 2.1).

3.2. Meteorological Data and Irrigation Map

The downward shortwave radiation (Rs), air temperature (Ta), and specific humidity (RH) needed for the PT-JPL 
model (see Section 2.1) were acquired from the Modern-Era Retrospective analysis for Research and Applica-
tions Version 2 (MERRA-2, Gelaro et al., 2017) of NASA's Global Modeling and Assimilation Office (GMAO, 
https://gmao.gsfc.nasa.gov/). Furthermore, the latest version (5.0) of the Global Map of Irrigation Areas (GMIA) 
from the Food and Agriculture Organization (FAO) was used in this study to identify the irrigated areas (see 
Section 2.2). The GMIA can provide the amount of area equipped for irrigation as the percentage of the total area 
for each pixel, with a spatial resolution of 5 min (Siebert et al., 2013).

Product Platform Resolution Data availability Reference

ASCAT MetOp-A/B 0.25° 2007– Wagner et al. (2013)

AMSR2-LPRM GCOM W1 2012– Parinussa et al. (2015)

AMSR2-JAXA Kim et al. (2015)

SMOS-BEC SMOS MIRAS 2009– Font et al. (2013)

SMOS-IC Fernandez-Moran et al. (2017)

SMAP L3 SMAP ∼9 km 2015– Chan et al. (2018)

SMAP L4 Reichle et al. (2019)

CCI SM Multisource 0.25° 1978– Dorigo et al. (2017)

Table 2 
Details of the Selected Satellite-Based Soil Moisture Products

Product Resolution Coverage Data availability Reference

GPCP-Daily 1° Global 1996– Adler et al. (2017)

TMPA 3B42 0.25° 50°S–50°N 1998– Huffman et al. (2007)

CMORPH 0.25° 60°S–60°N 2002– Joyce et al. (2004)

PERSIANN-CDR 0.25° 60°S–60°N 1983– Ashouri et al. (2015)

Table 3 
Details of the Selected Satellite-Based Precipitation Products

https://lpdaac.usgs.gov/products/mod13c1v006/
https://lpdaac.usgs.gov/products/mcd43c1v006/
https://gmao.gsfc.nasa.gov/
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3.3. Comparison and Validation Data

We used the reported data from the United States Department of Agriculture (USDA; FRIS-2013, the 2013 
Farm and Ranch Irrigation Survey), the Chinese Ministry of Water Resources (survey data from 2015), and the 
FAO (AQUASTAT Report, Irrigation Water Withdrawal by Country) to assess the estimated IWU at different 
levels (states/provinces/countries). It should be noted that the reported irrigation-related data generally represent 
the total irrigation water withdrawal (i.e., IWW), rather than the actual IWU. The meanings of the different 
irrigation-related definitions are explained in Appendix C. We also used the flux data from 12 cropland sites to 
evaluate the simulated ET, including 11 sites from the FLUXNET2015 data set (https://fluxnet.org/) and one site 
(i.e., the Daman site) from the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project. 
Details of these 12 flux sites are provided in Table S1 in Supporting Information S1. We also selected two widely 
used global ET data sets, i.e., the Global Land Evaporation Amsterdam Model (GLEAM) and the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) ET product (MOD16), to make a comparison with the ET simulation 
from the coupled PT-JPL model in the IWU estimation. In addition, to test the effect of satellite-based surface 
soil moisture and site-observed soil moisture when using them to derive the total water input, we used data from 
20 flux sites with available site-observed soil moisture and precipitation across different climate zones (Table S2 
in Supporting Information S1).

3.4. Data Preprocessing

We counted the valid periods and calculated the data completeness ratio for each soil moisture data set (Figure 3). 
Specifically, we performed statistical analysis at a daily scale for each soil moisture product, filtering out the 
valid data (set to 1) and missing data (set to 0) to calculate the overall data completeness ratio for each day. For 
the spatial resolution, we unified all the input data to a spatial resolution of 0.25° by the use of a nonlinear spatial 
interpolation method that can eliminate the abrupt boundary changes (Mu et al., 2011). This interpolation method 
employs a fourth power cosine function to calculate the nonlinear distance from the great circle distance among 
the four coarse pixels surrounding a given pixel with a targeted resolution (0.25° in this study). The interpolated 
result for the targeted pixel can then be calculated from the weighted average of the corresponding coarse pixels.

4. Results
4.1. Status of Soil Water Balance

To test the reliability of the proposed method, the key simulated components (i.e., precipitation, ET) in the soil 
water balance equation were validated against observations. This was based on the hypothesis put forward in 

Figure 3. Available periods for the selected satellite-based soil moisture products (upper panel) and their completeness 
(percentage) for the global irrigated areas.

https://fluxnet.org/
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Section 2.2, i.e., the derived precipitation (Pder) using optimized parameters 
should be well correlated with the satellite-based precipitation (Pobs) on rainy 
days. Table 4 presents the grid-based median values of the Pearson's correla-
tion coefficient (R) computed between the observed Pobs and individual Pder 
from the different combinations of soil moisture and precipitation products. 
The R values range from 0.77 to 0.84, with relatively high R values found for 
the ASCAT, SMAP-L3, and CCI SM products, due to their relatively high 
completeness. These results indicate that the optimized parameters perform 
reasonably well in balancing the soil water dynamics at each pixel. Moreover, 
the spatial patterns of the optimized parameters are given in Appendix  A 
(Figure A1).

Figure  4 further shows the spatial distributions of the R values computed 
between the four satellite-based precipitation (Pobs) estimates and the corre-
sponding ensemble precipitation estimate 𝐴𝐴

(

𝑃𝑃 ens

der

)

 , which was calculated from 
the individual Pder estimates of the eight soil moisture products weighted 
by their completeness ratio. The grid-based median values of the R values 
between Pobs and 𝐴𝐴 𝐴𝐴 ens

der
 are also given in Table 4. Noticeably, the TMPA-based 

𝐴𝐴 𝐴𝐴 ens

der
 estimate (Figure 4c) shows a smaller coverage (50°S–50°N), due to the limited spatial coverage of the TMPA 

product. The R values show similar spatial distributions for the four cases, and generally remain at a high level 
(R > 0.80) across the vast majority of the global irrigated areas, especially in India, China, and central Conti-
nental United States (CONUS). However, relatively low correlations (R < 0.6) are found near the equator and 
the regions around 50°N (e.g., west Russia, northeast US). This can be explained by the following facts. First, 
soil moisture remains at a high saturation level near the equator regions due to the abundant precipitation and 
extensive paddy rice cultivation. Second, the topography of these regions (mountainous areas and mixed crop-
land with forest) is complex, which makes it more difficult for satellites to capture the soil moisture dynamics. 
Lastly, the soil freeze-thaw processes in the high-latitude regions lead to poor quality for the microwave remote 
sensing-based soil moisture.

We also validated the ET simulations produced by the coupled PT-JPL model using the flux observations 
collected at 12 cropland sites (Figure 5). Furthermore, we compared the site observations with two widely used 

CMORPH PERSIANN-CDR TMPA GPCP

ASCAT 0.83 0.84 0.83 0.83

AMSR2-LPRM 0.80 0.80 0.79 0.79

AMSR2-JAXA 0.79 0.79 0.78 0.79

SMOS-BEC 0.80 0.78 0.78 0.77

SMOS-IC 0.80 0.79 0.79 0.78

SMAP-L3 0.84 0.83 0.83 0.82

SMAP-L4 0.79 0.83 0.81 0.82

CCI SM 0.84 0.84 0.83 0.83

Ensemble 𝐴𝐴
(

𝑃𝑃 ens

der

)

0.82 0.82 0.81 0.80

Table 4 
Median R Values Computed Between the Pobs and Pder Derived From the 
Different Combinations of Soil Moisture and Precipitation Products

Figure 4. Spatial distribution of the R values between the Pobs of the four precipitation products and the corresponding 𝐴𝐴 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝑒𝑒𝑑𝑑
 derived from the eight soil moisture 

products over the global irrigated areas.
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ET products, to verify the robustness of the coupled PT-JPL ET scheme (Figure 6 and Figures S2 and S3 in 
Supporting Information S1). The coupled PT-JPL model exhibits a low root-mean-square error (RMSE) across 
all the sites (<2 mm day −1), except for the Daman site in northwest China (RMSE = 2.13 mm day −1), and shows 
a superior performance with higher R value and Nash-Sutcliffe efficiency (NSE) score than the other two global 
ET products (Figure 6). These results confirm the effectiveness of the proposed framework in estimating the key 
components of the soil water balance equation across the global irrigated areas.

4.2. Comparison of the IWU Estimates With the Reported IWW

We compared the estimated IWUens with the reported IWW from the USDA at the state level, the reported IWW 
from 31 provinces of China, and the reported IWW from the FAO at the country level (see Section 3.3). Figure 7 
shows the regression of the IWU estimates versus the reported IWW for the three selected cases (i.e., the states of 
the US, the provinces of China, and the countries from the FAO. For the 50 states of the US with well-developed 
irrigation systems, the estimated IWUens shows reasonable correlation with the reported data, with the values of 
R, bias, and RMSE being 0.71, −0.42 km 3, and 3.24 km 3, respectively. For the 31 provinces of China, a lower 
R value (0.50) but higher bias (3.10 km 3) and RMSE (8.95 km 3) are obtained. For the comparison between the 
IWU estimates and the FAO-reported IWW at the country level, the R value is as high as 0.95, while the bias and 
RMSE are −10.84 and 40.07 km 3, respectively. In general, the comparison at the country level shows a higher 
R value but considerably more bias and RMSE than the comparisons made at the state and province level. The 
explanation for this could be the large number of statistical points (up to 172 countries) with the larger range of 

Figure 5. Comparison of the evapotranspiration (ET) simulated by the coupled Priestley-Taylor Jet Propulsion Laboratory 
(PT-JPL) model used in this study with the observations collected from 12 cropland flux sites (11 sites from the FLUXNET 
data set and one site from the HiWATER project). For the site-scale test, we used the meteorological data from the flux site 
combined with the vegetation index from MOD13C1 (spatial resolution of 0.05°) as the forcing data for the PT-JPL model.
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values (i.e., ∼688 km 3 year −1 for the India IWW) in the country-level comparison. Moreover, we compared our 
IWU estimates with the latest FRIS2018 survey data at the different states of the US (see Figure S4 in Supporting 
Information S1), with the values of R, bias, and RMSE being 0.73, −0.70 km 3, and 3.38 km 3.

To evaluate the performance of the proposed IWU estimation algorithm at a regional scale, we selected the Heihe 
River Basin (HRB) and the Shiyang River Basin (SRB), where are two inland river basins in northwest China 
and the cropland is mainly supplied by irrigation (see Figure S5 in Supporting Information S1). The interannual 
variation of the estimated IWU exhibits high correlation with the reported data (Figures 8a and 8b), which can 
indirectly verify the accuracy of IWU estimates if the conveyance efficiency (Ec) remains stable during the study 
period. In addition, we selected an extreme arid irrigated area in the Kingdom of Saudi Arabia, where agricultural 

Figure 6. Statistics of the performances of the coupled PT-JPL, GLEAM, and MOD16 models, compared with the flux 
observations over croplands.

Figure 7. Comparisons of the ensemble mean irrigation water use (IWUens) estimates with the reported irrigation water withdrawal (IWW) in: (a) 50 states of the US, 
(b) 31 provinces of China, and (c) 172 countries with the IWW above 5 km 3 from the Food and Agriculture Organization (FAO).
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irrigation is mostly dependent on groundwater (see Figure S6 in Supporting Information S1). Similarly, the esti-
mated IWU are generally consistent with the reported data (R = 0.73, Figure 8c). Thus, these results indicates 
that the proposed IWU estimation scheme can capture the dynamic changes of irrigation at regional scale and also 
exhibit reasonable application performance in the groundwater supply regions.

Figure 9 further shows an intracomparison of the RMSE for the different kinds of IWU estimates obtained in this 
study, including the simple average of the 32 individual IWUi estimates (gray lines) and its corresponding range 
for the different precipitation products (see the boxplot in Figure 9), the four kinds of IWUp (blue diamonds) and 
their simple mean result (𝐴𝐴 IWU

𝑝𝑝

𝑎𝑎𝑎𝑎𝑎𝑎 , blue lines), and the final IWUens (green lines). The IWUi shows considerable 
uncertainty across the different comparison levels, and the corresponding mean RMSE of IWUi is relatively 
high across the different cases (4.2 km 3 for the US states, 11.3 km 3 for the Chinese provinces, and 54.5 km 3 for 
the FAO countries). On the other hand, the RMSE of the IWUens (green lines) remains around an acceptable 
level (relatively low) across the different cases (US, China, and FAO), which indicates that the IWUens is the 

Figure 8. Comparison between the estimated irrigation water use (IWU) and reported data for (a) Heihe River Basin (HRB), (b) Shiyang River Basin (SRB), and (c) 
the Kingdom of Saudi Arabia (SAU). The reported irrigation water withdrawals were derived from the annual report on water resources of Gansu Province (China) and 
the 2019 statistical yearbook from the Ministry of Environment Water & Agriculture of the Kingdom of Saudi Arabia.

Figure 9. Comparison of the root-mean-square error (RMSE) of the different irrigation water use (IWU) estimates from the 32 individual IWU (IWUi) estimates 
grouped for the different precipitation products (boxplot) and their average results 𝐴𝐴

(

IWU
𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎

)

 , the weighted IWU results for the four kinds of precipitation products 
(IWUp) and their simple mean results 𝐴𝐴

(

IWU
𝑝𝑝

𝑎𝑎𝑎𝑎𝑎𝑎

)

 , and the ensemble results (IWUens).
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most reliable and robust result among all the kinds of estimated IWU (Figure  9). Although the CMORPH-
based IWU (IWUCMORPH) and TMPA-based IWU (IWUTMPA) perform better in the US states (RMSE = 3.08 km 3, 
IWUCMORPH) and FAO countries (RMSE = 39.69 km 3, IWUTMPA), the integrated IWUens results show a better 
performance at the various scales.

In addition, since the integrated IWUens is derived from the weighted average of the different precipitation and 
soil moisture products, we can quantify their respective contributions from their corresponding weights. From 
Figure 10, we can see that ASCAT, AMSR2-JAXA, and CCI SM have the most impact on the IWUens. In contrast, 
the soil moisture products from SMOS (including the IC and BEC products) make a relatively low contribution 
to the IWUens. For the different precipitation products, CMORPH and GPCP have relatively large weights when 
compared with PERSIANN-CDR and TMPA. It should be noted that a twill box indicates that there are no data 
in the specific year.

4.3. Spatial and Temporal Patterns of the Global IWU Estimates

Figure 11 shows the spatial distribution of the annual mean IWUens from 2011 to 2018. Notably, the maximum 
IWU values are found in the northern parts of Pakistan (i.e., the Indus River Basin) and India (i.e., the Ganges 
River Basin), where the world's largest irrigation systems are found. In East Asia, a relatively high IWU value is 
found in the North China Plain, which is the main grain-growing region of China. For the US, the major irrigation 
water contributors are found in California, the Mississippi Valley, and the Central Great Plains. In Europe, the 
IWU is mainly concentrated in the Iberian and Apennine peninsulas. The distribution of the IWU is very sparse 
in the Southern Hemisphere, and is more concentrated in limited regions of Australia and southern Chile. In addi-
tion, the spatial distribution of the four kinds of IWUp estimates is shown in Appendix B (Figure B1).

Figure 10. The different contributions of the multiple satellite-based products to the final ensemble irrigation water use 
(IWUens) estimates.
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Overall, the total amount of global annual IWU is about 959 ± 130 km 3 year −1, based on the IWUens estimates 
for the period of 2011–2018. Figure 12 further shows the statistics for the irrigated area and IWUens for the top 
12 major irrigated countries/regions in the world. The top 12 countries/regions account for about 75% of the 
global irrigated area and about 81% of the global IWU. Among these countries/regions, India and China have 
the most irrigated land (21% and 20% of the global irrigated area, respectively), and account for 25% and 23.8% 
of the global IWU, respectively. Moreover, the IWU changes of India and China make a contribution of at least 
8% to the change of global IWU during the study period of 2011–2018 (error bar in Figure 12). The US is the 
third-largest contributor, and accounts for about 9.3% of the global irrigated area and 8.3% of the global IWU.

To explore the IWU variation and its link to hydrological cycling, we compared the monthly IWU anomalies, as 
well as the ET and precipitation anomalies, around the world and the top five irrigated countries/regions for the 
period of 2011–2018 (Figure 13). An upward tendency can be observed for the monthly anomalies of global IWU 
(Figure 13a) from September 2012 to September 2013, which is followed by a general declining trend for the rest 
of the study period. A similar phenomenon can also be observed for the five selected countries/regions. Further-
more, relatively high consistency between the monthly anomalies of IWU and ET can be found in India and 
Pakistan (Figures 13b and 13f), especially after 2016. However, the correlation between the monthly anomalies 
of IWU and ET is relatively low in China, the US, and the EU (Figures 13c, 13d, and 13e), while the precipitation 
shows more relevance to ET. Further study to explore the linkages between the different hydrological components 
is still needed.

Figure 11. Spatial distributions of the ensemble mean annual irrigation water use (IWU) from 2011 to 2018.

Figure 12. Statistics for the irrigated area and mean annual (IWU) for the top 12 irrigated countries/regions from 2011 to 2018. The irrigated area was calculated from 
the Global Map of Irrigation Areas (GMIA) product in this study. The error bars represent the range of the IWU estimates during the period from 2011 to 2018.
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5. Discussion
Theoretically, the rapid increase in soil moisture observed by satellite on rain-free days can be mainly attributed 
to irrigation, and can thus be used to estimate IWU. This principle has been widely used for the estimation of 
IWU at local scales in previous studies (Brocca et al., 2018; Dari et al., 2020; Filippucci et al., 2020; Jalilvand 
et al., 2019). This “bottom to up” approach focuses on the changes in the soil water balance to estimate IWU, 
which skillfully avoids the uncertainties and unpredictability of irrigation events caused by human behavior. 
However, the accuracy in estimating IWU at a global scale depends on the proper parameter values in the algo-
rithm, accurate quantification of ET, and the completeness of the satellite-based data. In this paper, we have 
proposed a framework that couples the soil water balance equation with optimized parameters and the PT-JPL 
model to estimate global IWU by integrating multiple satellite-based products (eight soil moisture products and 
four precipitation products).

The parameters (e.g., Zs and Ks) are critical when determining the capacity of soil to hold and leak water. Although 
microwave sensors can only detect soil moisture in a limited depth range (Zheng et al., 2019), the optimized 
parameters in combination with satellite-based surface soil moisture estimations can be used to obtain proper 
estimates of soil water content. Thus, reasonable estimates of the recharge of water into soil due to precipitation 
or irrigation can also be obtained. The results obtained in this study indicate that the spatial distributions of the 
optimized parameters are reasonable and consistent with the climate and land surface conditions (Figure A1). A 
good agreement is also seen between the satellite-based precipitation and derived precipitation over most of the 
irrigated areas around the world (Figure 4). To further confirm our judgment, we compared the in situ observed 
precipitation and derived precipitation using satellite-based 𝐴𝐴

(

𝑃𝑃 sat

der

)

 and in situ observed 𝐴𝐴
(

𝑃𝑃 sit

der

)

 soil moisture at 20 
flux sites. The results show that both kinds of derived precipitation vary consistently with the in situ observed 
precipitation (Figure S7 and Table S2 in Supporting Information S1). Hence, we can conclude that the DE-MC 

Figure 13. Monthly anomalies of irrigation water use (IWU), evapotranspiration (ET), and precipitation around the world and the top five primary irrigated countries/
regions from 2011 to 2018. The bar plots in purple and the black dotted lines represent the precipitation and ET anomalies, respectively. The green lines and ranges 
represent the anomalies from the IWUens and four kinds of IWUp, respectively.
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scheme can be used to successfully identify the optimal parameter values from their prior distributions and satel-
lite observations.

Moreover, the ET process is critical in determining the soil water dynamics (Siebert & Döll, 2010), and further 
influences the accurate estimation of global IWU. In addition to the effect of soil moisture, ET is highly correlated 
with plant biophysical characteristics, such as the canopy conductance and vegetation greening (Ma et al., 2021; 
Schlesinger & Jasechko, 2014; Wei et al., 2017). Previous studies have illustrated that the PT-JPL model can 
obtain good performances in simulating ET over different land surface conditions (Michel et al., 2016; Zhang 
et al., 2017). The findings of our study indicate that the coupled PT-JPL model can provide a better ET estimation 
for cropland than the other global ET products (Figures 5 and 6). Furthermore, we replaced the ET estimated by 
the PT-JPL model with two widely used ET products (GLEAM and MOD16) and recalculated the final IWUens 
(see Figure S8 in Supporting Information S1). The results of this comparison (i.e., bias, RMSE, and NSE) fully 
demonstrate the advantage of the coupled PT-JPL model for global IWU estimation.

Another critical problem when estimating global IWU is the completeness of the soil moisture data, which 
are often subject to the data gaps caused by the discontinuous satellite coverage and revisit frequency (Wang 
et al., 2012). To overcome this problem, we have proposed a framework to integrate the different kinds of soil 
moisture and precipitation products and properly estimate global IWU. The results indicate that the ensemble 
IWU (IWUens) estimates are reasonable when compared to the reported data from the states/provinces of the US 
and China. In addition, the IWUens provides a more robust estimate than the 𝐴𝐴 IWU

𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐴𝐴 IWU

𝑝𝑝

𝑎𝑎𝑎𝑎𝑎𝑎 (Figure 9), which 
indicates that the ensemble scheme is effective in reducing the uncertainty in estimating global IWU. When 
comparing the results of this study to the results reported in previous studies (Zaussinger et al., 2019; Zohaib 
& Choi, 2020), it can be found that the method proposed in this paper is generally better in estimating IWU. As 
demonstrated in Table 5, Zaussinger et al. (2019) compared their IWU estimates with the 2013 FRIS report of 
the USDA, and the obtained bias ranged from −2.47 to −2.29 km 3. Zohaib and Choi (2020) compared their IWU 
estimates with the FAO statistical data across different countries, and the obtained bias ranged from −76.6 to 
−73.9 km 3. In addition, we further compared our IWU estimates in the CONUS with recent irrigation-related 
studies (Chen et al., 2019; Zhang & Long, 2021) based on 2013/2018 FRIS data, and good agreements among 
them were found (see Figure S9 in Supporting Information S1).

Nevertheless, an underestimation in IWU can be observed in the results of the current study (see Section 4.2). 
This phenomenon has also been reported in previous studies (e.g., Jalilvand et al., 2019; Zaussinger et al., 2019; 
Zohaib & Choi, 2020), and can be explained by the following reasons. First, the spatial resolution of the soil 
moisture products (∼25 km) is too coarse to capture some of the changes in soil moisture within a complex 
pixel, especially when the irrigated area only accounts for a small fraction of a pixel. Thus, it is difficult for the 
satellite to identify the slight changes in soil moisture caused by irrigation. This issue is well known as the “scale 
effect,” in that satellite-based observation is the composite retrieval of information within a single pixel (Cao 
et al., 2020). Fortunately, new advances in satellite sensors/missions (e.g., ECOSTRESS; Fisher et al., 2020) 
can be expected to help solve the problem and promote IWU estimation at a finer spatial resolution. Besides, the 
inconsistency between precipitation and soil moisture data can also affect the identification of irrigation signals, 
which leads to spurious irrigation.

Furthermore, the reported irrigation data are usually the IWW statistics without considering the conveyance 
efficiency (Ec). However, it is challenging to obtain Ec at the pixel scale as it is commonly affected by the soil 

R Bias (km 3 year −1) RMSE (km 3 year −1)

This study Previous study This study Previous study This study Previous study

US states 0.71 0.36–0.80 −0.42 −2.47 to −2.29 3.24 5.21–5.32

FAO countries 0.96 0.72–0.81 −65.8 −76.6 to −73.9 104.1 81.8–97.7

Note. The previous statistics for the US states are from Zaussinger et al. (2019); the previous statistics for the FAO countries 
are from Zohaib and Choi (2020). It should be noted that we selected the countries from the FAO with an annual IWW of 
above 20 km 3, to ensure the same comparison level as Zohaib and Choi (2020).

Table 5 
Comparison of the Error Statistics Between the IWU Estimates Obtained in This Study and Those of Previous Studies
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texture/type (seepage and percolation), the physical condition of the irrigation 
waterway (e.g., cracks and pipeline aging), and the atmospheric environment 
(surface evaporation). To make the IWW statistics more comparable to the 
estimated IWU, we conducted a sensitivity experiment with different values 
of Ec for the reported IWW statistics, based on a previous study (Jägermeyr 
et al., 2015), and then conducted an intercomparison between the estimated 
IWUens, the original IWW, and the modified IWW at the FAO country level 
(Table 6). The underestimation of IWU is improved by the modified IWW 
that considers the conveyance efficiency. Especially in Case 1 (open canal 
with sand lining, Ec = 0.70), the RMSE is improved by about 47.9% relative 
to the original IWW. Hence, the uncertainty caused by the differences in the 
concepts of IWW and IWU should not be ignored (see Appendix C).

It should also be noted that the irrigated areas used in the current study are static rather than dynamic, which 
can also cause some underestimation of IWU in regions with rapid irrigation expansion. For instance, as the 
most significant contributor to the IWU of China, the irrigated areas in Xinjiang have expanded greatly during 
the period between 2011 and 2018 (see Figure S10 and Table S3 in Supporting Information S1), which some-
what explains the underestimation of the IWU in this region. Lastly, the soil moisture is generally saturated 
in irrigated areas planted with paddy rice or other semiaquatic crops, which makes it difficult to identify the 
irrigation signal due to the failure in detecting the irrigation signal from the soil moisture data (Ozdogan & 
Gutman, 2008).

Another disadvantage of the proposed IWU algorithm is that it is difficult to distinguish the contributions from 
groundwater and surface water to irrigation. An assessment of the implication of the IWU source could be bene-
ficial to the optimal development of groundwater and the exploration of irrigation-climate feedback (Famiglietti 
et al., 2011). Instead of using a statistical ratio from the inventory of the irrigation regime, satellite gravimetry 
has recently provided us with a potential way to partition the total IWU in combination with a land surface model 
(e.g., the Community Land Model; Lawrence et al., 2019), which is an approach that could allow us to monitor 
water availability at a continuous spatial coverage (Anderson et al., 2015). In addition, crop/plant modeling is 
also essential to quantify IWC from the point of view of blue water resources (Chen et al., 2019). Much potential 
progress could be achieved by coupling the satellite-based IWU algorithm and crop models to explore the net/
total irrigation efficiency, return flow, and the redistribution of water resources by irrigation.

6. Conclusions
In this paper, to generate an estimation of global IWU, we have proposed an integrated framework to couple the 
processes associated with irrigation by integrating a total of 32 combinations of satellite-based soil moisture and 
precipitation products. The PT-JPL model and DE-MC scheme were incorporated into the IWU estimation algo-
rithm to enhance the characterization of the ET process and parameter optimization. The results showed that the 
ensemble scheme of the proposed framework is a feasible way to improve the accuracy of global IWU estimation. 
The ensemble scheme also demonstrated lower uncertainty than the IWU estimates from individual satellite 
observations. The estimated IWU showed a reasonable correlation with the survey-based IWW at different spatial 
scales (regional level, state/province level, and country level), especially when the reported IWW was modified 
to consider the impact of conveyance efficiency. In addition, incorporation of the coupled process-based PT-JPL 
model provided better ET estimation in cropland areas than the other global ET products (GLEAM and MOD16). 
Our results showed that large amounts of IWU are found in the northern parts of Pakistan and India, North China, 
California, the Mississippi Valley, the Central Great Plains of the US, and the Iberian and Apennine peninsulas 
of Europe. These five countries/regions together contribute >70% of the global IWU.

A general underestimation was found when estimating the IWU based on satellite observations, both in this study 
and previous studies, in comparison to the reported IWW. The main reasons for this can be attributed to the differ-
ent meanings of IWU and IWW, the coarse spatial resolution of satellite observations, the underestimation of irri-
gated areas when using a static map, and the deficiency of soil moisture products in detecting irrigation events in 
irrigated areas planted with paddy rice or other semiaquatic crops. Nevertheless, the framework proposed in this 
paper has demonstrated advantages in integrating multiple precipitation and soil moisture products, to address the 

Original IWW

Modified IWW a

Case 1 Case 2 Case 3 Case 4

Bias (km 3 year −1) −10.84 −5.86 −6.69 −7.52 −10.01

RMSE (km 3 year −1) 40.07 20.85 23.94 27.13 36.81

 aCase 1: open canal with sand lining (Ec = 0.70); Case 2: open canal with 
loam lining (Ec = 0.75); Case 3: open canal with clay lining (Ec = 0.80); Case 
4: pipe canal for sprinkler and drip technology (Ec = 0.95).

Table 6 
Intercomparison of the Main Statistics Between the Estimated IWU, the 
Original IWW, and the Modified IWW Considering Conveyance Efficiency
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uncertainties in estimating global IWU, leading to improved IWU estimation when compared to previous studies. 
Furthermore, as a vital supplement to the traditional survey-based IWU estimates, the global IWU estimates 
obtained in this study represent an opportunity to assess the impact of human activities in regulating natural water 
resources. However, continuous efforts are still needed to enhance the satellite sensors and retrieval algorithms, 
to provide soil moisture and precipitation products with a higher spatiotemporal resolution, and further reduce 
the uncertainty in estimating global IWU.

Appendix A: Spatial Distribution of Optimized Parameters
The average optimized values and the corresponding standard deviations of the optimized parameters (i.e., Zs, Ks, 
b) obtained by the DE-MC scheme are shown in Figure A1. The obtained values for the optimized parameters 
show reasonable spatial distributions that generally follow the climate and land conditions. For instance, parame-
ter Zs shows higher values in humid areas (e.g., Southern India, China, and the US) than in arid areas, indicating 
that the soil column has a stronger capacity for holding water in humid areas.

Figure A1. Spatial distribution of the optimized parameters over the global irrigated areas. (a), (c), and (e) represent the average values of optimized parameters Zs, Ks, 
and b; (b), (d), and (f) represent the corresponding standard deviation (std) obtained by the differential evolution Markov chain (DE-MC) scheme.
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Appendix B: Spatial Pattern of the Global IWU Estimates Obtained With Different 
Precipitation Products
The spatial differences in the IWU estimates obtained using different precipitation products as the target are 
illustrated in Figure B1. The different IWUp estimates (i.e., IWUCMORPH, IWUTMPA, IWUPERSIANN-CDR, IWUGPCP) 
generally show comparable spatial distributions, whereby the magnitudes of IWUCMORPH and IWUTMPA are larger 
than those of IWUPERSIANN-CDR and IWUGPCP. Among the different products, the IWUPERSIANN-CDR estimates are 
clearly lower than the others in both China and India.

Figure B1. Spatial distributions of the mean global annual IWUp estimates produced based on the four different precipitation products from 2011 to 2018.
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Appendix C: Different Irrigation-Related Definitions
There are several different irrigation-related definitions that need to be clarified:

1.  Irrigation water withdrawal (IWW) represents the total water amount diverted from the water source (e.g., 
surface river or groundwater well). The IWW is also the only irrigation water data that can be directly recorded 
by water management sectors. However, it is usually counted at the scale of a whole irrigated area (or admin-
istrative division), rather than at the field scale.

2.  IWU, which was estimated in this study, represents the actual water amount entering into the field. Generally 
speaking, IWU is less than IWW, to some extent, depending on the conveyance efficiency (Ec) of the irrigation 
waterway from the water source to the irrigated field. Ec varies greatly in space, and is usually high in developed 
countries, but can be very low in developing countries. For example, the irrigation water in Kansas in the US 
is pumped and carried in closed conduits, so that the Ec should be nearly 100% in consequence (Rogers, 1997), 
whereas the Ec can be around 50% in open canals without lining, in some arid regions such as central Asia.

3.  Irrigation water requirement (IWR) is defined as the quantity of water required to support healthy crop 
growth, and specifically to satisfy transpiration. In nonirrigated areas, precipitation is the only way to satisfy 
plant water requirement, while irrigation is used to compensate for the transpiration deficit in irrigated envi-
ronments. Furthermore, the IWC is defined as the actual irrigation water used by crops (also known as the blue 
water consumption), which should be less than or equal to the IWR. Thus, for a specific crop type, the IWR/
IWC is a complex variable, which is dependent on precipitation and the plant physiological condition during 
the growing season. Hence, IWR/IWC will be close to IWU when the water application efficiency is high 
(e.g., trickle irrigation); otherwise, IWR/IWC will be much lower than IWU, in most cases.

4.  The overall irrigation water efficiency (Eo) represents the effectiveness of the irrigation system, and is 
expressed as the ratio of irrigation water stored in the root zone (can be used by crops, approximately equal 
to IWC) to that withdrawn from water sources (Li et al., 2020). Eo can also be the product of the conveyance 
efficiency (Ec) and the water application efficiency (Ea). Here, Ea is expressed as the ratio of irrigation water 
stored in the root zone to that irrigation water actually entering the field (IWU). Therefore, Eo should be 
generally lower than Ec or Ea.

Data Availability Statement
The MODIS products are available from the Land Processes Distributed Active Archive Center (LPDAAC) at 
https://lpdaac.usgs.gov/. The meteorological data from MERRA-2 are available from the Goddard Earth Sciences 
Data and Information Services Center (GESDISC) at https://disc.gsfc.nasa.gov/. The global map of irrigated area 
from Food and Agriculture Organization is available at http://www.fao.org/aquastat/en/. The flux data used is this 
study are achieved from FLUXNET2015 at https://fluxnet.org/ and HiWATER at https://data.tpdc.ac.cn/en/. The 
satellite-based soil moisture data of the ASCAT are available from the Integrated Climate Data Center (ICDC) 
at https://icdc.cen.uni-hamburg.de/en/; the AMSR2 are available from GESDISC at https://disc.gsfc.nasa.gov/; 
the SMAP are available from National Snow and Ice Data Center (NSIDC) at https://nsidc.org/; the SMOS-BEC 
are available from the Barcelona Expert Center at http://bec.icm.csic.es/; the SMOS-IC are available from the 
Centre Aval de Traitement des Données SMOS (CATDS) at https://www.catds.fr/; the ESA-CCI are available 
from ESA at https://esa-soilmoisture-cci.org/. The satellite-based precipitation data of the GPCP, CMORPH, and 
PERSIANN-CDR are available from National Center for Atmospheric Research (NCAR) at https://climatedat-
aguide.ucar.edu/climate-data; the TMPA-3B42 are available from GESDISC at https://disc.gsfc.nasa.gov/. The 
generated IWU data in this study can be achieved from National Tibetan Plateau Data Center (TPDC) at https://
doi.org/10.11888/hydro.tpdc.271220.
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